我的推广设为首页收藏本站
天气与日历 繁体中文越嘉打卡
切换到宽版

 找回密码
 立即注册

简单一步,快速登录

微信账号登录

简单一步,快速登录

QQ登录

只需一步,快速开始

手机号码,快捷登录

手机号码,快捷登录

搜索
热搜: 教育 书法 文学
查看: 34|回复: 1

猜猜她是谁

[复制链接]
阅读字号:
IP属地:江苏省苏州市

1

主题

0

回帖

315

积分

中级会员

积分
315
发表于 昨天 19:04|字数:0 来自手机 | 显示全部楼层 |阅读模式 来自 江苏苏州
image.jpg

微信扫一扫,阅读更方便^_^

由手机上传

由手机上传
越嘉艺术网免责声明
帖子,如有侵权,烦请申请删帖,也可留言,随即删除。
回复 申请删帖

使用道具 举报

5

主题

0

回帖

1939

积分

金牌会员

积分
1939

最佳新人活跃会员热心会员灌水之王论坛元老

发表于 昨天 19:05|字数:1,288 来自手机 | 显示全部楼层 来自 InvalidIP属地:

15851667124 发表于 2025-9-22 19:04
Alright, let's go step by step.

---

## **1. Understanding the problem**

We are given a function  
\[
f(x) = \frac{x^2 - 4}{x - 2}
\]
and we want to find the limit:
\[
\lim_{x \to 2} f(x)
\]
and then determine which of the given statements is true.

The statements are:

1. \(\lim_{x \to 2} f(x)\) does not exist because \(f(2)\) is undefined.
2. \(\lim_{x \to 2} f(x) = 4\) because \(\lim_{x \to 2} f(x)\) depends on values of \(x\) close to 2 but not equal to 2.
3. \(\lim_{x \to 2} f(x)\) does not exist because division by zero is undefined.

---

## **2. Simplify \(f(x)\)**

\[
f(x) = \frac{x^2 - 4}{x - 2}
\]
Factor numerator:
\[
x^2 - 4 = (x - 2)(x + 2)
\]
So for \(x \neq 2\):
\[
f(x) = \frac{(x - 2)(x + 2)}{x - 2} = x + 2
\]

Thus:
\[
f(x) = x + 2 \quad \text{for all } x \neq 2
\]

---

## **3. Compute the limit**

\[
\lim_{x \to 2} f(x) = \lim_{x \to 2} (x + 2) = 2 + 2 = 4
\]

So the limit exists and equals 4, even though \(f(2)\) is undefined.

---

## **4. Evaluate each statement**

**Statement 1:**  
"\(\lim_{x \to 2} f(x)\) does not exist because \(f(2)\) is undefined."  
This is false — the limit depends on values near \(x = 2\), not at \(x = 2\). A function can have a limit at a point where it is undefined.

**Statement 2:**  
"\(\lim_{x \to 2} f(x) = 4\) because \(\lim_{x \to 2} f(x)\) depends on values of \(x\) close to 2 but not equal to 2."  
This is true — we simplified \(f(x)\) to \(x+2\) for \(x \neq 2\), so indeed near \(x=2\) the function behaves like \(x+2\), giving limit 4.

**Statement 3:**  
"\(\lim_{x \to 2} f(x)\) does not exist because division by zero is undefined."  
This is false — division by zero at \(x=2\) means \(f(2)\) is undefined, but the limit can still exist.

---

## **5. Conclusion**

The correct statement is **Statement 2**.

\[
\boxed{2}
\]   

--来源:越嘉艺术网
回复 申请删帖

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关闭

站长推荐上一条 /9 下一条

QQ|工具箱|Archiver|手机版|小黑屋|越嘉艺术网 ( 苏ICP备2022013055号-1 ) |越嘉打卡  苏公网安备 32050902101400号

GMT+8, 2025-9-23 05:55

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表